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Letters
Development of bis-thiourea-type organocatalyst for
asymmetric Baylis–Hillman reactionq
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Abstract—A new chiral bis-thiourea-type organocatalyst 2 developed for the Baylis–Hillman reaction provided a drastic rate
enhancement. Allylic alcohols were obtained with up to 90% ee in the case of cyclohexanecarboxaldehyde (4i).
� 2004 Elsevier Ltd. All rights reserved.
The Baylis–Hillman reaction is a superior carbon–
carbon bond-forming reaction since it gives synthetically
useful chiral building blocks, that is, allylic alcohols,
from simple aldehydes and electron-deficient alkenes
without generating by-products.1 This atoms economi-
cally superior reaction, however, is well known to be
sluggish, and controlling the newly generated chirality in
the product is also an issue.2 To address these problems,
various approaches,3–5 especially focusing on Lewis acid
catalysts3 and/or chiral tertiary amine catalysts,4 have
been investigated. Herein, we report a novel approach to
enhance the reaction rate, together with an asymmetric
version of the Baylis–Hillman reaction of cyclohexenone
with aldehydes, using a chiral bis-thiourea-type organo-
catalyst.

An organocatalyst, that is, an organic compound, which
exhibits catalytic activities,6 does not contain heavy
metal, and so is advantageous from an environmental as
well as a resource standpoint. The easy reproducibility
and flexible design of such a catalyst are additional
advantages. During our recent studies focusing on the
development of efficient organocatalysts,7 we indepen-
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dently found the urea/thiourea compounds 18 having
3,5-bis-trifluoromethylphenyl groups activated the car-
bonyl compounds through hydrogen-bonding interac-
tions, and drastically accelerated the hetero-Michael
reaction of d-lactone with pyrrolidine.7e These findings
prompted us to apply the urea/thiourea catalyst 1 to the
Baylis–Hillman reaction with the aim of enhancing the
reaction between the ammonium enolate and the alde-
hyde, the rate-determining step, through promoting the
enolate formation, as well as activating the aldehyde
reactivity.9 Asymmetric induction of the product was
also expected as a result of the chirality in 1 (Chart 1).

First, the reactions of cyclohexenone (3) and benzalde-
hyde (4a) with DABCO in the presence of 1a and 1b as
organocatalysts were examined without using solvent
(Table 1). The allylic alcohol 5a was obtained in 52%
and 60% yields, respectively, which are more than 50-
fold higher than the yield of the uncatalyzed reaction.
1H NMR experiments showed that the thiourea 1b
interacted with both the enone 3 and aldehyde 4a,10
1a : X = O
1b : X = S

CF3

F3C N
H

N
H

X

CF3

CF3 NH
N
H

NH

S
N
H

S

CF3

CF3

F3C

CF3

2

Chart 1. Structure of urea/thiourea and bis-thiourea compounds.
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Table 2. Reaction of 3 and 4a with various amines and phosphines

H

O OOH

R

4a
 (1 eq)

5a

cyclohexenone (3) (1.2 eq)
2 (0.2 eq)

amines or 
phosphines (0.25 eq)

no solvent, rt, 24 h

Entry Base Yield (%) Ee (%)a

1 DMAP 90 22

2 Et3N 49 30

3 1-Methyl pyrrolidine 43 29

4 Imidazole 10 61

5 N-Methylimidazole 10 47

6 1,4-Dimethylpiperazine 9 31

7 Ph3P Trace ––

8 n-Bu3P Trace ––

a The enantiomeric excess of 5a was determined by HPLC analysis

using a chiral column.5e

Table 1. Baylis–Hillman reaction catalyzed by 1 and 2

+

4a
(1 eq)

3
(1.2 eq)

O

H

O OOH

R

5a

1 or 2 (0.2 eq)
DABCO (0.25 eq)

no solvent, rt, 24 h

Entry Catalyst Yield (%) Ee (%)a

1 None 1 ––

2 1a 52 ––

3 1b 60 ––

4 2 72 33 (R)b

a The enantiomeric excess of 5a was determined by HPLC analysis

using a chiral column.5e
bAbsolute stereochemistry was determined by comparison of the ½a�D
value with that of reported by McDougal and Schaus.5e
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which indicated that 1b is involved in at least two steps
of the Baylis–Hillman reaction, that is, (1) hetero-Mi-
chael reaction of the enone and tertiary amine, and (2)
aldol reaction (Fig. 1). Based on these observations, we
anticipated that compounds in which two urea/thiourea
groups are connected with an appropriate spacer would
accelerate the reaction by holding the two reaction
components in a suitable position to react. The hypo-
thetical structure of the complex further implies that
chirality in the spacer might cause asymmetric induction
of the product.11 Therefore, we designed a bis-thiourea-
functionalized chiral catalyst 2 to accommodate an en-
one and an aldehyde in a spatially restricted orientation.

The bis-thiourea catalyst 2 was prepared from isothio-
cyanate and diaminocyclohexane simply by mixing
them, and purified by recrystallization.12 Using the bis-
thiourea catalyst 2, coupling reaction of cyclohexenone
(3) and benzaldehyde (4a) was examined under the same
conditions as used for entries 1–3 in Table 1. In the
presence of the bis-thiourea catalyst 2, the yield of the
allylic alcohol 5a was increased to 72%, which indicates
great effectiveness (72-fold versus the uncatalyzed reac-
tion) of the bis-functionalized catalyst, as expected
(Table 1).13 In this case, the enantiomeric excess of 5a
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Figure 1. Baylis–Hillman reaction promoted by bis-thiourea catalyst.
was found to be 33%, favoring ‘R’ configuration.5e

Under these conditions, the reactions of various tertiary
amines and phosphines were examined, and the results
are summarized in Table 2.

In the case of DMAP, the reaction proceeded more
effectively than with DABCO to give 5a in 90% yield.
Triethylamine and 1-methylpyrrolidine afforded mod-
erate reaction enhancement and 5a was obtained in 49%
and 43% yields, respectively. In these cases, the enan-
tiomeric excess was 22–30%. Interestingly, in the case of
imidazole, the enantiomeric excess of 5a was increased
to 61%, though the yield was low. With these results in
hand, we examined the feasibility of an asymmetric
version of the Baylis–Hillman reaction of cyclohexenone
(3) with various aldehydes 4 to investigate the utility and
limitations of this bis-thiourea catalyst 2 (Table 3).

The Baylis–Hillman reaction with cyclohexenone (3)
(2 equiv) and aldehydes 4 (1 equiv) was examined, using
0.4 equiv of base and bis-thiourea 2 in the absence of
solvent. In the case of benzaldehyde (4a) with DMAP,
5a was obtained in 33% ee with 88% yield. Changing the
base to imidazole increased the ee value to 57% even
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Table 3. Reaction of 3 with various aldehydes in the presence of 2

R H

O OOH

R

cyclohexenone (3) (2 eq)
2 (0.4 eq)

amine (0.4 eq)
no solvent4a-i

 (1 eq)

R

5a-5i

Entry 4 Base Temp (�C) Time (h) Yield (%) Ee (%)a

1 H

O

4a
DMAP )5 72 88 33

Imidazole rt 120 40 57

2 H

OCF3

4b DMAP )5 72 38 30

3

F3C H

O

4c DMAP )5 72 88 19

4
H

O

F3C
4d

DMAP )5 72 99 33

Imidazole 4 120 95 44

5 Ph H

O

4e

DMAP )5 72 33 59

6 H

O
Me

4f

DMAP )5 72 63 60

7
Me

Me
H

O

4g

DMAP )5 72 67 60

8 H

O

4h

DMAP )5 72 55 86

9 H

O

4i

DMAP )5 72 72 90

a The enantiomeric excess of 5 was determined by HPLC analysis using a chiral column.5e;14
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Figure 2. Proposed transition state of the bis-thiourea-catalyzed

Baylis–Hillman reaction.
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though the reaction was conducted at room tempera-
ture. ortho-, meta-, and para-substituted benzaldehyde
derivatives reacted to give 5b–d in 30%, 20%, and 33%
ee, respectively (runs 3–5). The chemical yields of
aromatic aldehydes were quite high, except for ortho-
substituted derivatives. The ortho-substituent presum-
ably disturbs the coordination of the carbonyl group in
4b to the thiourea moiety. Although asymmetric
induction with aromatic aldehydes was low, the ali-
phatic aldehydes 4e, 4f, and branched aldehyde 4g gave
the corresponding allylic alcohols 5e–g with 60% ee.
More excitingly, five- and six-membered cyclic aliphatic
aldehyde 4h and 4i, gave the alcohols 5h and 5i with very
high enantiomeric excess, that is, 86% and 90% ee,
respectively.

Since the newly generated stereochemistry of the alcohol
in 5 is ‘R’,5e;14 the transition state of this Baylis–Hillman
reaction can be considered to be as shown in Figure 2.
The aldehyde 4 and the enone 3 coordinate to the
thiourea groups in 2 through hydrogen-bonding inter-
actions, such that the ‘R’ group in the aldehyde is lo-
cated on the opposite side from the thiourea group,
which interacts with the enone, and these two compo-
nents interact to form the new carbon–carbon bond.
This would afford (R)-5 as the major coupling product.

In summary, we have developed the new bis-thiourea-
type catalyst 2 for the Baylis–Hillman reaction. This
catalyst drastically improved the reaction rate. Further,
the produced allylic alcohol 5 showed induction of
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chirality up to 90% ee in the case of cyclohexanecar-
boxaldehyde (4i). It should be noted that the bis-thio-
urea catalyst 2 can be easily recovered quantitatively by
silica-gel column chromatography. This catalyst could
also be easily modified by introducing an appropriate
chiral spacer, which might improve the asymmetric
induction with a variety of substrates. Further efforts to
improve the catalyst are in progress.
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